Quantification of cellular poly(ADP-ribosyl)ation by stable isotope dilution mass spectrometry reveals tissue- and drug-dependent stress response dynamics.

نویسندگان

  • Rita Martello
  • Aswin Mangerich
  • Sabine Sass
  • Peter C Dedon
  • Alexander Bürkle
چکیده

Poly(ADP-ribosyl)ation is an essential post-translational modification with the biopolymer poly(ADP-ribose) (PAR). The reaction is catalyzed by poly(ADP-ribose) polymerases (PARPs) and plays key roles in cellular physiology and stress response. PARP inhibitors are currently being tested in clinical cancer treatment, in combination therapy, or as monotherapeutic agents by inducing synthetic lethality. We have developed an accurate and sensitive bioanalytical platform based on isotope dilution mass spectrometry in order to quantify steady-state and stress-induced PAR levels in cells and tissues and to characterize pharmacological properties of PARP inhibitors. In contrast to existing PAR-detection techniques, the LC-MS/MS method uses authentic isotope-labeled standards, which provide unequivocal chemical specificity to quantify cellular PAR in absolute terms with femtomol sensitivity. Using this platform we analyzed steady-state levels as well as stress-induced dynamics of poly(ADP-ribosyl)ation in a series of biological systems including cancer cell lines, mouse tissues, and primary human lymphocytes. Our results demonstrate a rapid and transient stress-induced increase in PAR levels by >100-fold in a dose- and time-dependent manner with significant differences between cell types and individual human lymphocyte donors. Furthermore, ex vivo pharmacodynamic studies in human lymphocytes provide new insight into pharmacological properties of clinically relevant PARP inhibitors. Finally, we adapted the LC-MS/MS method to quantify poly(ADP-ribosyl)ation in solid tissues and identified tissue-dependent associations between PARP1 expression and PAR levels in a series of different mouse organs. In conclusion, this study demonstrates that mass spectrometric quantification of cellular poly(ADP-ribosyl)ation has a wide range of applications in basic research as well as in drug development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences.

Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide...

متن کامل

Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress

Upon DNA damage induction, DNA-dependent poly(ADP-ribose) polymerases (PARPs) synthesize an anionic poly(ADP-ribose) (pADPr) scaffold to which several proteins bind with the subsequent formation of pADPr-associated multiprotein complexes. We have used a combination of affinity-purification methods and proteomics approaches to isolate these complexes and assess protein dynamics with respect to p...

متن کامل

Phosphoproteomic Approach to Characterize Protein Mono- and Poly(ADP-ribosyl)ation Sites from Cells

Poly(ADP-ribose), or PAR, is a cellular polymer implicated in DNA/RNA metabolism, cell death, and cellular stress response via its role as a post-translational modification, signaling molecule, and scaffolding element. PAR is synthesized by a family of proteins known as poly(ADP-ribose) polymerases, or PARPs, which attach PAR polymers to various amino acids of substrate proteins. The nature of ...

متن کامل

Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage.

A defect in the Werner syndrome protein (WRN) leads to the premature aging disease Werner syndrome (WS). Hallmark features of cells derived from WS patients include genomic instability and hypersensitivity to certain DNA-damaging agents. WRN contains a highly conserved region, the RecQ conserved domain, that plays a central role in protein interactions. We searched for proteins that bound to th...

متن کامل

Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress.

Poly(ADP-ribosyl)ation is a posttranslational protein modification in which ADP-ribose (ADP-Rib) units derived from NAD(+) are attached to proteins by poly(ADP-Rib) polymerase (PARP) enzymes. ADP-Rib groups are removed from these polymer chains by the enzyme poly(ADP-Rib) glycohydrolase (PARG). In animals, poly(ADP-ribosyl)ation is associated with DNA damage responses and programmed cell death....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS chemical biology

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2013